The lung at high altitude Il polmone in alta quota

نویسنده

  • Annalisa Cogo
چکیده

The lung is the interface between the environment and the metabolic mechanisms of the body, and plays a pivotal role in exposure to high altitude. In fact, high altitude is a challenge for the human body due to the progressive reduction of barometric pressure and subsequent reduction of oxygen pressure, leading to a series of important physiologic responses that enable individuals to tolerate hypoxia and secure the oxygen supply to tissues. These compensatory responses are known as the acclimatization process. Most of the adaptations are observed from 2000 m a.s.l. and they become progressively more evident with increasing altitude, from near sea level through to moderate and extreme altitude. A new classification of altitude levels based on the effects on performance and well-being has been recently proposed [1]: the decrease in partial pressure of oxygen reduces maximal oxygen uptake and impairs "aerobic" performance by reducing maximal aerobic power. Submaximal exercise performance is also impaired at altitude. When the acclimatization is not adequate, hypoxia triggers maladaptive responses that lead to various forms of high altitude illness or acute mountain sickness (AMS), characterized by headache plus gastrointestinal symptoms (anorexia, nausea) and sleep disturbances. AMS is present in 10-30% of subjects at altitudes between 2500 and 3000 m a.s.l. and is usually due to a fast ascent. It is well defined by the short phrase: “Too fast, too high”. Less frequent, but much more serious, consequences are high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE). The lung response to acute altitude exposure is mainly hyperventilation which, together with elevated heart rate, aims at achieving an adequate supply of oxygen to the tissues. At rest, ventilation increases by firstly increasing the tidal volume, at least up to 3500 m. Above this altitude, also the breathing rate significantly increases. Besides the compensatory response, other mechanisms affect lung physiology during hypoxic exposure: the increase of pulmonary artery pressure and endothelial permeability which can explain the extravascular lung fluid accumulation described in many papers [2]. It must be underlined that the interstitial fluid accumulation which affects a large part of climbers at high altitude should be considered a para-physio logical mechanism and does not predict subsequent pulmonary edema [3]. The role of the lung in the acute exposure to altitude was first described by Angelo Mosso, physiologist at the University of Torino, at the end of the 19th cent ury. He very well pointed out the changes in ventilation and the reduction of lung volumes consistent with the extravascular fluid accumulation in the pulmonary interstitium [4]. However, mountain climate is characterized not only by the progressive reduction of barometric and inspiratory oxygen pressure, but also by other changes that can variably affect respiratory function and bronchial hyperresponsiveness: progressive reduction of air density, humidity, temperature, aeroallergens, and outdoor pollution. The lower density of air reduces respiratory resistances and increases inspiratory and expiratory flows; this fact explains the improvement of some parameters of the forced exhalation curve observed at altitude. The reduced temperature and the reduced humidity cause hyperventilation of dry and cold air, especially during exercise; this fact could induce an asthma attack, especially in subjects suffering from exercise induced bronchospasm. The reduction or even the absence of some aeroallergens (i.e. dermato phagoides) and outdoor pollution reduces the airway inflammation. Mountain climate can therefore variably affect the respiratory system. An increasing number of people travel each year to high altitude for leisure, sport and even work purposes. Because of the critical role played by the respiratory system in the adaptive and maladaptive responses, patients with underlying lung disease may

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Simulation of Inspiratory Airflow in Human Airways during Exercise at Sea Level and at High Altitude

At high altitudes, the air pressure is much lower than it is at sea level and contains fewer oxygen molecules and less oxygen is taken in at each breath. This requires deeper and rapid breathing to get the same amount of oxygen into the blood stream compared to breathing in air at sea level. Exercises increase the oxygen demand and make breathing more difficult at high altitude. In this study, ...

متن کامل

Lung-derived innate cytokines: new epigenetic targets of allergen-specific sublingual immunotherapy

Objective(s):Sublingual allergen-specific immunotherapy is a safe and effective method for treatment of IgE-mediated respiratory allergies; however, the underlying mechanisms are not fully understood. This study was planned to test whether sublingual immunotherapy (SLIT) can exert epigenetic mechanisms through which the airway allergic responses can be extinguished. Materials and Methods:BALB/c...

متن کامل

Predictive values of TNF-α, IL-6, IL-10 for radiation pneumonitis

Background: To investigate the expression of TNF-α, IL-6, IL-10 in the plasma of patients with lung cancer who received radiation therapy (RT), and to analyze the correlation between these cytokines and radiation pneumonitis (RP). Materials and Methods: Patients with lung cancer who received 3D-CRT in our hospital were prospectively evaluated. Circulating cytokine levels were measured wit...

متن کامل

Chronic Mountain Sickness (Cms) Misdiagnosed As High Altitude Cerebral Edema (Hace) At Extreme Altitude (6400 M/21000 Ft)

Introduction: Chronic mountain sickness (CMS) represents a syndrome of secondary polycythemia along with thrombocytopenia, altered hemorheology, pulmonary and systemic hypertension, and congestive heart failure, occurring due to hypobaric hypoxia-anoxia-induced erythropoiesis reported in both native mountain residents and new climbers after prolonged stays at high and extreme a...

متن کامل

Curcumin Mitigates Radiation-induced Lung Pneumonitis and Fibrosis in Rats

Radiation-induced lung injury is one of the most prominent factors that interfere with chest cancer radiotherapy, and poses a great threat to patients exposed to total body irradiation. Upregulation of pro-oxidant enzymes is one of the main mechanisms through which the late effects of ionizing radiation on lung injury can be exerted. Interleukin (IL)-4 and IL-13 are two important cytokines that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011